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ABSTRACT

Several recent studies of internal gravity waves have been expressed in a Lagrangian reference frame, motivated
by the observation that in this frame the dispersion relation then excludes the Eulerian Doppler shifting term
due to a background flow. Here the dispersion relation in a Lagrangian reference frame is explicitly derived for
a background flow and background density that are slowly varying with respect to the waves, but are otherwise
arbitrary functions of space and time. Two derivations are given, both yielding the same result. The first derivation
involves a transformation of the dispersion relation from Eulerian to Lagrangian coordinates, while the second
derivation involves a wave-packet analysis of the equations of motion directly in Lagrangian coordinates. The
authors show that, although the Eulerian Doppler shifting term is removed from the dispersion relation by the
transformation of the frequency when passing from an Eulerian to a Lagrangian reference frame, a dependence
on the background shear is then introduced by the transformation of the wavenumber. This dependence on the
background shear is the term that accounts for wave refraction in the Lagrangian frame, and its role has apparently
not been fully appreciated in the aforementioned previous studies.

1. Introduction

There has been a recent revival of interest in for-
mulating a theory for internal gravity waves in a La-
grangian frame of reference, rather than the usual Eu-
lerian frame of reference. Following the work of Allen
and Joseph (1989), Hines (2001), and Chunchuzov
(2002) have argued that the nonlinear terms in the La-
grangian form of the equations are, in some cases, of
less importance than the corresponding nonlinear terms
in the Eulerian form of the equations. In effect, the
implication is that simply using a coordinate transfor-
mation from the Eulerian frame to the Lagrangian frame
can remove some of the effects of nonlinearity. This is
an interesting, albeit provocative, suggestion. It is of
course true that, in some special cases, a system of
partial differential equations can be totally or partially
explicitly linearized by a coordinate transformation, but
this is not so in general for the transformation from
Eulerian to Lagrangian coordinates.
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The above studies are concerned with an internal
wave field in a background composed of other internal
waves. In each of these studies, the Lagrangian internal
wave dispersion relation is taken to have the same func-
tional form as the well-known Eulerian internal wave
dispersion relation, but without the Doppler shifting
term [see, for instance, (2.3) of Allen and Joseph (1989)
or (59) below]. Hence, such a Lagrangian dispersion
relation loses a crucial dependence on the background
flow and, in particular, cannot account for refraction by
the background flow. Thus, in particular, Hines (2002)
has suggested that under appropriate conditions (see sec-
tion 5), there are consequent simplifications for the ray
tracing of internal waves if the rays are expressed in
Lagrangian coordinates.

These issues have motivated us to reexamine the
structure of the internal wave dispersion relation in a
Lagrangian reference frame vis-à-vis the corresponding
internal wave dispersion relation in an Eulerian refer-
ence frame. Hence, in this paper, we explicitly and sys-
tematically derive the Lagrangian dispersion relation for
small-amplitude internal waves in the presence of a gen-
eral background flow of finite amplitude. For simplicity,
we consider two-dimensional flow and ignore the effects
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of the earth’s rotation. Two derivations are given, which
lead to the same result. The first involves a transfor-
mation of the dispersion relation from Eulerian to La-
grangian coordinates (section 3a), and the second in-
volves a wave-packet asymptotic analysis of the La-
grangian equations of motion (section 3b). A general,
slowly varying, space- and time-dependent background
is treated first. Then, for illustration, we specialize to a
horizontal background flow that varies only in the ver-
tical direction (section 4). The main conclusion from
our analysis is that there is a complete equivalence be-
tween the Eulerian and Lagrangian wave dispersion re-
lations and that internal wave rays that refract in an
Eulerian frame will refract in a Lagrangian frame, and
vice versa.

2. The Eulerian dispersion relation

The Eulerian coordinates are x 5 (x, z) with z vertical.
We use an overbar to denote quantities associated with
the background. For example, the background velocity

(x, t) 5 ( , ) and the background density (x, t).u u w r
The background flow is incompressible and satisfies the
equations for conservation of density, but we allow for
the possible presence of arbitrary body forces in the
momentum equations to maintain the background flow.

Linearizing about this background, the equations for the
associated perturbations u, w, r, and pressure p are

r(u 1 uu 1 wu ) 1 p 1 · · · 5 0, (1)t x z x

r(w 1 uw 1 ww ) 1 p 1 gr 1 · · · 5 0, (2)t x z z

r 1 ur 1 wr 1 ur 1 wr 5 0, and (3)t x z x z

u 1 w 5 0. (4)x z

Here, subscripts denote partial derivatives, and g is the
acceleration due to gravity. In the momentum equations
{· · ·} denote terms that can be neglected at leading order
since they involve derivatives of , . More formally,u w
we could introduce the slow variables X 5 ex, Z 5 ez,
T 5 et, where e is a small parameter characterizing the
slow variation of the background with respect to the
wave field, so that 5 (X, Z, T), etc. The derivativesu u
are then O(e) with respect to the wave frequency. But
it is important here to note that g x/ and g z/ arer r r r
O(1) quantities with respect to the square of the wave
frequency. The reason for this is that for these internal
waves the wave frequency scales with (g/H)1/2, where
H is a scale height for the density stratification. To avoid
excessive notation, we will not formally introduce these
slow variables into the derivation, although their pres-
ence is always understood.

Introducing the perturbation streamfunction

u 5 2c , w 5 c ,z x (5)

and eliminating the pressure from the momentum equa-
tions gives, at leading order,

2 2 2r [(¹ c) 1 u(¹ c) 1 w(¹ c) ] 1 gr 1 · · · 5 0,t x z x

(6)

r 1 ur 1 wr 2 c r 1 c r 5 0.t x z z x x z

(7)

We let

iu(x,t)c, r } a(x, t)e 1 c.c., (8)

where a is the amplitude, u is the phase for a wave
packet, and c.c. denotes complex conjugate. More for-
mally, a 5 a (X, Z, T) is slowly varying on the same
scale as the background, whereas the phase u 5 u(X,
Z, T)/e is rapidly varying. The Eulerian wavenumber
and frequency are then defined by

k 5 (k, m) 5 =u, (9)

v 5 2u . (10)t

Because the phase is rapidly varying with respect to the
background, at leading order the derivatives of the field
variables are taken with respect to the phase only. Sub-
stituting (8) into (6)–(7) then leads to the Eulerian dis-
persion relation

2 2 2 2 2 2v̂ 5 (k N 2 kmM )/(k 1 m ), (11)

with

v̂ 5 v 2 ku 2 mw . (12)

Here N 2 5 2g z/ and M 2 5 2g x/ . Often the hor-r r r r
izontal density gradient is ignored; that is, M 5 0.

An equivalent representation for the Eulerian disper-
sion relation, and one that is more convenient for our
derivation of the Lagrangian dispersion relation in sec-
tion 3a, is obtained by using the fact that the background
density satisfies the equation for the conservation ofr
density. This can be solved to give 5 r0(z 2 ). Herer z
r0(z) is the undisturbed density field (in the absence of
any flow) and is the vertical displacement induced byz
the background flow, which satisfies the equation:

z 1 uz 1 wz 5 w .t x z (13)

We then use the relations

r 5 r9(1 2 z ), r 5 r9(2z ), (14)z 0 z x 0 x

where the prime indicates differentiation of r0 with re-
spect to its argument (z 2 ). Consequently, the Eulerianz
dispersion relation can be rewritten as

2 2 2 2v̂ 5 N kk̂/(k 1 m ). (15)

Here

k̂ 5 k 1 mz 2 kz , (16)x z

2N 5 2gr9/r . (17)0 0

Note that N 5 N(z 2 ) and so varies on the samez
temporal and spatial scales as the background flow.

The Eulerian ray equations (Lighthill 1978) are read-
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ily obtained from the Eulerian dispersion relation v 5
v(k, x, t) in (15) and are given by

dx dk
5 = v, 5 2=v. (18)kdt dt

Here d/dt is the rate of change following the ray at the
local group velocity =kv 5 (vk, vm). Along an Eulerian
ray, we also have dv/dt 5 v t.

3. The Lagrangian dispersion relation

In Lagrangian coordinates x9 5 (x9, z9), the equations
of motion are (e.g., Lamb 1932)

r (x x 1 z z 1 gz ) 1 p 5 0, (19)0 t t x9 t t x9 x9 x9

r (x x 1 z z 1 gz ) 1 p 5 0, (20)0 t t z9 t t z9 z9 z9

](x, z)
r 5 r (z9) 5 1. (21)0 [ ]](x9, z9)

To derive the Lagrangian dispersion relation, we can
apply an analogous wave-packet analysis to these La-
grangian equations, or we can transform the Eulerian
dispersion relation to the Lagrangian frame of reference.
We give both derivations, starting with the latter.

a. Derivation by transformation of the Eulerian
dispersion relation

This derivation is based on the mapping between Eu-
lerian and Lagrangian coordinates, whose Jacobian is
given in (21). The Lagrangian momentum equations
(19)–(20) are not explicitly used in this derivation.

We introduce the particle displacements j, z, , ,j z
such that

x 5 x9 1 j(x9, z9, t) 1 j (x9, z9, t), and (22)

z 5 z9 1 z(x9, z9, t) 1 z (x9, z9, t). (23)

It is sufficient here to consider only the displacements
, due to the background flow. To retain the pertur-j z

bation displacements j, z would invalidate the lineari-
zation procedure as applied in both the Eulerian and
Lagrangian frames. In particular, their retention would
lead to their occurrence in the Lagrangian dispersion
relation, clearly inconsistent with a linear theory. For
the rest of this subsection, we therefore neglect j, z in
(22)–(23).

For the background flow, the particle displacement
fields are related to the Eulerian background velocity
field through the equations

j 5 u(x9 1 j , z9 1 z , t), and (24)t

z 5 w(x9 1 j , z9 1 z , t), (25)t

with 5 0, 5 0 at t 5 0. Formally, the backgroundj z
displacements depend on the slow variables X9 5 ex9,
Z9 5 ez9, T 5 et, which are the Lagrangian counterparts
of the Eulerian slow variables X 5 ex, Z 5 ez, T 5 et

defined in section 2. Note that the displacements are
formally of O(1/e), although of course their first deriv-
atives are O(1). As in the Eulerian case, we will not
explicitly use these slow variables here, but their pres-
ence is always understood.

It will be useful for the present derivation to construct
the matrix B, defined by

x x 1 1 j jx9 z9 x9 z9B 5 5 . (26)1 2 1 2z z z 1 1 zx9 z9 x9 z9

Incompressibility of the background flow implies that
detB 5 1.

To transform the Eulerian dispersion relation into La-
grangian coordinates, we must transform not only k, m,
v but also the Eulerian derivatives x, z that occur inz z
the definition of k̂ in (16). Starting with this latter trans-
formation we first note that

x x x9 x9 1 0x9 z9 x z 5 . (27)1 21 2 1 2z z z9 z9 0 1x9 z9 x z

Thus,

x9 x9 z 2xx z z9 z9215 B 5 (28)1 2 1 2z9 z9 2z xx z x9 x9

so that

x9 5 z , z9 5 x , x9 5 2x , z9 5 2z . (29)x z9 z x9 z z9 x x9

These four equations, on using (22)–(23) for the back-
ground flow only, imply that

2j 5 z , 2z 5 j , j 5 j ,x z9 z x9 z z9

z 5 z . (30)x x9

Hence k̂ in (16) becomes

k̂ 5 k 1 mz 1 kj .x9 x9 (31)

Next we transform the Eulerian wavenumber and fre-
quency k, v. The Lagrangian wavenumber and fre-
quency will be denoted by k9, v9. We start with the
phase u in (8), which transforms from Eulerian to La-
grangian coordinates according to

u(x, t) 5 u[x(x9, t), t] 5 u9(x9, t). (32)

Defining =9 5 (]x9, ]z9), we have

k9 5 =9u9 v9 5 2u9.t (33)

Using 5 uxxx9 1 uzzx9 and a similar expression foru9x9

, we arrive at the wavenumber transformationu9z9

k9 5 kx 1 mz , (34)x9 x9

m9 5 kx 1 mz . (35)z9 z9

Equivalently,
Tk9 5 B k, (36)

where superscript T indicates the transpose. Using the
second expression for B in (26), we have
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k9 5 k 1 kj 1 mz , (37)x9 x9

m9 5 m 1 kj 1 mz . (38)z9 z9

From (31) and (37) we now see that k9 5 k̂; that is, k̂
is in fact the Lagrangian horizontal wavenumber.

The inverse relations are

k 5 k9 1 k9z 2 m9z , (39)z9 x9

m 5 m9 2 k9j 1 m9j . (40)z9 x9

For the frequency,

v9 5 2u 2 u x 2 u z , (41)t x t z t

5 v 2 ku 2 mw, (42)

5 v̂. (43)

Thus the Eulerian dispersion relation (15) can be
written as

2 2 2 2v̂ 5 N kk9/(k 1 m ). (44)

Substituting for , k, m from (39)–(43) gives the La-v̂
grangian dispersion relation

2N k9(k9 1 k9z 2 m9z )z9 x92v9 5 .
2 2(k9 1 k9z 2 m9z ) 1 (m9 2 k9j 1 m9j )z9 x9 z9 x9

(45)

The derivatives of , appearing here are, by (24)–(25),j z
functions of the background shear.

The Lagrangian ray equations are the counterpart of
the Eulerian ray equations (18). That is, given the La-
grangian dispersion relation v9 5 v9(k9, x9, t) in (45),
the Lagrangian ray equations are

dx9 dk9
5 = v9, 5 2=9v9. (46)k9dt dt

Along a Lagrangian ray, dv9/dt 5 . Using the trans-v9t
formations (22)–(23), for the background flow alone,
along with (36) and (42)–(43), it can now be shown that
there is a complete equivalence between these Lagrang-
ian ray equations (46) and the Eulerian ray equations
(18). The demonstration is straightforward, but note the
relation

u ux zB 5 B (47)t 1 2w wx z

obtained by differentiation of (24)–(25) with respect to
x9, z9.

b. Derivation by an asymptotic analysis of the
Lagrangian equations

This derivation first requires a linearization of the
Lagrangian equations (19)–(21) about the background
flow, using the background and perturbation displace-
ments defined in (22)–(23). The result is

r [j (1 1 j ) 1 z z 1 gz ] 1 p 5 0, (48)0 t t x9 t t x9 x9 x9

r [j j 1 z (1 1 z ) 1 gz ] 1 p 5 0, (49)0 t t z9 t t z9 z9 z9

j (1 1 z ) 1 z (1 1 j ) 2 j z 2 z j 5 0. (50)x9 z9 z9 x9 z9 x9 x9 z9

Eliminating the pressure from (48)–(49) gives, to lead-
ing order,

(j 2 z ) 1 z z 1 j zx9 z9 t t x9t t z9 x9t t z9

22 j j 2 z z 1 N z 5 0. (51)t tz9 x9 t tz9 x9 x9

We seek solutions of the form
iu (x ,t)j, z } a9(x9, t)e 9 9 1 c.c., (52)

with k9 5 =9u9 and v9 5 2 as in (33). Substitutionu9t
into (50)–(51) gives

2 2v9 (mj 2 kz) 1 N k9z 5 0, (53)

mz 1 kj 5 0, (54)

where we have used the wavenumber relation (36) to
write the result in a compact form. Eliminating j or z
from these equations, we obtain

2 2 2 2v9 5 N kk9/(k 1 m ), (55)

which agrees with (43) and (44).

4. A steady horizontal background flow

We now apply the general Lagrangian dispersion re-
lation just obtained to the special case in which the back-
ground flow is horizontal and varies with depth only.u
The background displacements are then given by

j 5 u(z9)t, z 5 0. (56)

From (34)–(35), the relation between the Eulerian and
Lagrangian wavenumbers is then

k 5 k9, m 5 m9 2 k9u t.z9 (57)

The Lagrangian dispersion relation (45) reduces to
2 2 2 2 2v9 5 k9 N /[k9 1 (m9 2 k9u t) ].z9 (58)

The background shear z9 is small compared withu
v9since, when expressed in terms of the slow variables,
it is e Z9. This does not imply, however, that we canu
neglect k9 z9t in comparison with m9 in (58). Indeed, inu
terms of the slow variables this term is k9 Z9T and isu
O(1) with respect to the small parameter e. Alternatively
we could estimate k9 z9t as k9 /cg. Here cg is the verticalu u
component of group velocity (which for this problem
has the same value in both the Eulerian and Lagrangian
frames). We have used the estimates that along a ray
path z9z9 ; and z9/t ; cg. Thus, k9 z9t is an O(1)u u u
quantity and of the same order as m9.

It is clear from the study of Hartman (1975) that the
term k9 z9t in (58) can be important for the descriptionu
of rays in the Lagrangian frame. He considers the par-
ticular case of constant N and constant background shear

z9. Then m9, as well as k9, are constant along a La-u
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grangian ray, but v9 is not constant. This follows from
the Lagrangian dispersion relation (58), which depends
explicitly on t but not on z9 when z9 is constant. Foru
this particular case, the Lagrangian rays are straight lines
in (x9, z9), but the group velocity changes along the ray
due to the change in v9. The Lagrangian ray reflects
from the same turning point height (where v9 → N)
and asymptotes toward the same critical layer height
(where v9 → 0) as for the corresponding Eulerian ray.

Note that the coordinates used by Hartman (1975) are
Lagrangian in the sense that we have defined here. Hart-
man’s coordinates are x9 5 x 2 (z)t and z9 5 z, thatu
is, the position that moves with the velocity of the back-
ground flow. As the notation indicates, these are the
same as our Lagrangian coordinates x9 5 x 2 and z9j
5 z 2 when our coordinates are specialized to thisz
case using (56).

5. Discussion

The main result of this paper is the Lagrangian dis-
persion relation (45) for internal gravity waves. This
differs from the form used, for instance, by Allen and
Joseph (1989), which in present notation is (apart from
the Coriolis term and ignoring the third dimension)

2 2 2 2 2v9 5 N k9 /(k9 1 m9 ). (59)

Unlike this form, which is appropriate for a uniform
background without any shear, our Lagrangian disper-
sion relation (45) depends on the background straining
field. That is, it contains terms involving the derivatives
of the particle displacements and associated withj z
the background flow. These terms are functions of the
background shear through (24)–(25), and their occur-
rence in the Lagrangian dispersion relation then ac-
counts for wave refraction in the Lagrangian frame.

Allen and Joseph (1989) used Lagrangian coordinates
to describe a spectrum of internal waves, with each wave
component of the Lagrangian spectrum satisfying (59).
When this Lagrangian spectrum is transformed to the
Eulerian frame, the resulting high-wavenumber com-
ponents of the Eulerian spectrum were found to be non-
wavelike. That is, these components did not satisfy the
Eulerian dispersion relation (15). Our work suggests a
possible factor contributing to this result, in that Allen
and Joseph’s Lagrangian dispersion relation (59) and
the Eulerian dispersion relation (15) are not equivalent
to each other under the Lagrangian-to-Eulerian coor-
dinate mapping except in the limit of no background
shear. For these high wavenumbers, this limit is not
appropriate because the high wavenumbers are sub-
jected to strong background shears resulting from the
longer waves. A comprehensive discussion of this issue
of the high-wavenumber Eulerian spectrum can be
found in the recent review by Fritts and Alexander
(2003).

Hines (2002) examines another issue. He considers a
‘‘test wave’’ in a background of waves and asks the

question: when can the interaction of the test wave with
the background be ignored? Hines then finds that the
criteria for neglecting the interaction with the back-
ground depends on the test-wave wavenumber in dif-
ferent ways according to whether one uses an Eulerian
or a Lagrangian coordinate system (see Fig. 1 of Hines
2002).

In the Lagrangian frame, the Hines criteria for neg-
ligible interaction with the background involve his
quantities S1,1, S1,3, S3,1, S3,3, which correspond respec-
tively to our quantities x9, z9, x9, z9. The conditionsj j z z
on S1,1, S1,3 in Hines’ (3.17), (3.22), correspond here to
| x9 | K 1 and | z9 | K | m9/k9 | . The conditions onj j
S3,1, S3,3 in Hines’ (3.21), (3.18), correspond here to | x9 |z
K | k9/m9 | and | z9 | K 1. Under these conditions, thez
background terms in our Lagrangian dispersion relation
(45) become small, so in this respect our work is con-
sistent with that of Hines (2002).

In an Eulerian frame of reference, the corresponding
conditions under which the background flow can be ig-
nored are readily obtained from (15). Thus, we now
require the conditions under which v ø , or equiva-v̂
lently | k · | K , and under which k̂ ø k. On usingu v̂
the definitions (16) and (15), these can be expressed in
the form | | K N | k | / | k | 2, | x | K | k/m | and | z |u z z
K 1. Again, these conditions are consistent with those
obtained by Hines (2002) for the neglect of the effects
of the background in an Eulerian reference frame. How-
ever, we point out here that the criterion | k · u | K v̂
essentially estimates advection by the background flow,
rather than refraction, per se. To take account of re-
fraction, one needs to estimate the variation of k · u
along a ray. When this is done, the criterion is replaced
by | du | K N/ | k | , where du is a measure of the spatial
variability in u. Further, we also need to ensure that N(z
2 ) does not vary significantly with . This can bez z
achieved by requiring either that | x | K 1 and | z | Kz z
1, or that N itself is approximately constant.

Hines (2002) argues that there is an advantage in
using a Lagrangian frame when, as judged by the above
criteria, the interaction between the Lagrangian ray and
the background is weak (see appendix C of Hines 2002).
But note that the above criteria are local and wavenum-
ber dependent. They can be used to describe the con-
ditions under which the refraction is locally minimal,
either in an Eulerian frame on the one hand or in a
Lagrangian frame on the other hand. However, the pres-
ence of variations in the background, no matter how
weak, will cause some refraction and, since the criteria
for minimal refraction are wavenumber dependent, it is
not clear whether the refraction can necessarily remain
minimal along a ray over the time scales of interest.
Indeed Hines (2002, p. 26) notes that such conditions
for minimal refraction may be breached locally and need
to be continually confirmed. On the other hand, our
present formulation based on the full Lagrangian dis-
persion relation (45) is not subject to any such restric-
tion. Numerical ray tracing based on the full Lagrangian
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dispersion relation (45) might help to resolve this ques-
tion, and to test the criteria derived by Hines (2002) and
described above.
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